Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity

Chaya D. Patel1,2, Iara M. Backes1,3, Sean A. Taylor1, Yike Jiang1, Arnaud Marchant4, Jean M. Pesola5, Donald M. Coen5, David M. Knipe6, Margaret E. Ackerman3, David A. Leib1*

Neonatal herpes simplex virus (nHSV) infections cause devastating morbidity and mortality in infants. Most nHSV cases are associated with primary maternal infection, consistent with the hypothesis that maternal immunity is protective. In humans, we found HSV-specific neutralizing antibodies in newborns of immune mothers, indicating that placentally transferred HSV-specific antibody is protective. Using a murine model, we showed that passive administration of HSV-specific antibody to dams prevented disseminated infection and mortality in pups. Maternal immunization with an HSV-2 replication-defective vaccine candidate, dLS-29, led to transfer of HSV-specific antibodies into neonatal circulation that protected against nHSV neurological disease and death. Furthermore, we observed considerable anxiety-like behavior in adult mice that had been infected with low doses of HSV as neonates, despite a notable lack of signs of infection. This phenotype suggests that nHSV infection can have an unsuspected and permanent impact on behavior. These behavioral sequelae of nHSV were prevented by maternal immunization with dLS-29, demonstrating an unexpected benefit of immunization. These findings also support the general concept that maternal immunization can prevent neurotropic neonatal infections and associated morbidity and mortality.

INTRODUCTION

Neonatal infections are a severe and traumatic manifestation of herpes simplex virus (HSV). Infection in the newborn is due to exposure to HSV-1 or HSV-2 during either parturition or the early postnatal period (1, 2). HSV infection in adults is often asymptomatic, but neonates are particularly susceptible, with about 50% of infected newborns developing disseminated disease or encephalitis (3). Without treatment, mortality is high and surviving infants with central nervous system (CNS) involvement suffer long-term neurodevelopmental disabilities, incurring substantial economic burden (3). Antiviral drugs such as acyclovir and its derivatives are the current standard treatment, but initiation of such therapy requires a high degree of clinical suspicion. Even aggressive acyclovir treatment of neonates with CNS infections leaves an estimated 70% of individuals with neurological sequelae (4–6). Globally, HSV-2 causes more than 70% of neonatal HSV (nHSV), but HSV-1 is the major cause in the Americas, Europe, and the Western Pacific (7). The global incidence of nHSV is estimated to be 1.03 per 10,000 live births (7, 8). However, estimates of nHSV have been reported to be as high as 1 in 3200 live births in the United States, suggesting regional variation (7). It is imperative, therefore, that additional therapies be considered for prevention of HSV infection in this vulnerable population.

HSV-1 and HSV-2 are neurotropic pathogens that infect epithelial tissues and nerve termini, before retrograde spread within the peripheral nervous system, wherein viral latency is established (9). Although primary infection or reactivation of virus can result in visible lesions, they are frequently asymptomatic, which renders diagnoses and preventative measures challenging, especially during the perinatal period (10, 11). Most nHSV infections are acquired via mucosal and cutaneous contact during birth. Hence, the virus can be found in lesions on the skin, eye, and mouth, disseminated in visceral organs, and in the CNS (12). CNS disease often presents with non-specific sepsis-like symptoms, leading to delayed antiviral treatment and high risk of mortality and morbidity (13–15).

The risk of vertical transmission of HSV is substantially higher during maternal primary infections (>55%) than during reactivation (<1%) (10, 11). This discrepancy in risk is consistent with the hypothesis that protection is conferred through transfer of maternal antibodies (16, 17), which are absent during primary infection. Immunoglobulin G (IgG) antibodies cross the placenta and supplement the developing fetal and neonatal immune system to protect against a variety of congenital infections (18–22). Whereas vertical transfer of antibody between maternal and fetal circulation is well understood, our recent work demonstrated that maternal antibodies also access neural tissues of the fetus with unexpected efficiency (23). In mice, this maternal IgG is sufficient to prevent neonatal HSV-1 neurological infection (23). Because maternal antibodies appear crucial to the outcome of nHSV, we investigated whether passive antibody treatment and maternal immunization could protect against disseminated infection and associated morbidity in the neonate. Maternal immunization has not been widely considered for nHSV (24), although HSV vaccine candidates, including glycoprotein sub-units, attenuated viruses, DNA vaccines, and replication-defective mutant viruses, have been broadly tested in a variety of animal systems (25). These include mouse and guinea pig genital infection, mouse eye models, and nonhuman primates (26–29). To date, none of these candidates have proved successful in clinical trials for prevention of
horizontal adult-to-adult transmission (30, 31). The candidate used in this study, HSV-2 dl5-29, is a replication-defective virus (32, 33) and protects mice and guinea pigs against ocular and genital infections respectively (34–36). This promising vaccine candidate was chosen for our study because it is currently in a phase 1 clinical trial (HSV529, NCT02571166).

The purpose of this study was to investigate the ability of maternal immunity to protect neonates against the short- and long-term consequences of HSV infection. This research strongly supports maternal immunization as a strategy to protect neonates against morbidity and mortality from HSV and potentially other neurotropic pathogens.

RESULTS

In humans, maternal HSV-specific antibodies are transferred to offspring and are potently neutralizing

Human IgG is efficiently transferred to fetal circulation via the placenta and protects the fetus and neonate from pathogens (37). This, however, has not been shown directly for HSV. If maternal immunity is involved in the prevention of nHSV, then HSV-specific neutralizing antibodies should be transferred to the fetus. To address this, we assessed HSV-1– and HSV-2–specific IgG from maternal and paired cord, neonatal (1 month), and infant (18 months) sera. Maternal HSV-specific antibodies were abundant in cord samples (Fig. 1A), with HSV-1 gD and gC-specific antibodies found at higher quantities in cord relative to maternal serum. Maternal antibodies were also present in neonates (Fig. 1B) but were absent by 18 months (fig. S1). To examine the biological activity of these transferred antibodies, we ranked and binned cord serum into tertiles based on HSV-specific antibody quantities and assessed neutralizing activities. High responders had antibody quantities that ranked in the top third, and low responder groups had antibody quantities that ranked in the bottom third, among all cord samples. Cord serum that contained more HSV-specific antibodies had higher neutralizing titers (Fig. 1C). These data showed that human cord serum contains HSV-specific antibody of maternal origin and that these antibodies effectively neutralize HSV-1.

Antibodies in sera and trigeminal ganglia from latently infected animals neutralize HSV-1

We demonstrated previously that passive transfer of antibodies from HSV-1 latently infected mice to naïve adult mice can efficiently access the trigeminal ganglia (TG), the site of latency for HSV-1 (23). Having shown here that HSV-specific antibodies are transferred between infected human mothers and their neonates, we wished to characterize the antibodies found in latently infected mice ≥21 days after infection. Therefore, we analyzed matched sera and TG samples for the presence and quantities of HSV-specific antibodies (Fig. 2, A and B). Sera from latently infected C57BL6 (B6) mice had potent reactivity

Fig. 1. Human maternal HSV-specific antibody is transferred to offspring and is neutralizing. Human maternal and paired cord and neonatal sera were probed for HSV-1– and HSV-2 (gG2)–specific antibodies via multiplex. Antibodies found in (A) maternal-cord pairs and (B) maternal-neonate pairs are plotted by glycoprotein binding (maximum binding, 1; minimum binding, 0). Regression lines for each glycoprotein are shown in corresponding colors. The dotted line of identity refers to a 1:1 transfer ratio between maternal and cord or neonate samples. Above the dotted line represents a higher corresponding cord or neonate value, whereas below represents a higher corresponding maternal value. gD’ refers to the ectodomain of HSV-1 gD. (C) Cord samples were binned into tertiles based on mean antibody binding in (A); high responder (above second tertile) and low responder (below first tertile) groups were assayed for neutralizing antibodies against HSV-1 via a serum neutralization assay. Serum from HSV-1 seronegative adults was used as a biological negative control. Statistical significance was determined using one-way analysis of variance (ANOVA) with Dunnnett’s multiple comparisons. In (A) and (B), regression lines were compared to the line of identity. In (C), bars represent the mean. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
We showed previously that the offspring of latently infected mice have neutralizing antibodies to HSV proteins in serum and TG tissues.

Passive IgG treatment protects neonates from lethal HSV-1 challenge

We hypothesized that maternal immunization could protect neonates. HSV-2 dl5-29 is a replication-defective virus that lacks the genes for the UL5 helicase-primase subunit and the UL29 (ICP8) DNA binding protein. It has demonstrated promising efficacy in animal models of genital herpes (23). However, in survival studies, pups from immune sera–treated females were largely protected, whereas pups from naive sera–treated mice succumbed to infection by 6 days after infection (Fig. 3B). These results demonstrated that transfer of immune sera can protect offspring in the neonatal mouse model. Essentially identical data were obtained after administration of purified immune IgG (Fig. 3, C and D). Thus, IgG in immune sera was sufficient for protection against viral challenge.

Immunization-derived, HSV-specific antibodies are efficiently transferred to the neonate

Having shown that passive vertical transfer of HSV-specific IgG is protective to neonates, we wished to address whether maternal immunization could protect neonates. HSV-2 dl5-29 is a replication-defective virus that lacks the genes for the UL5 helicase-primase subunit and the UL29 (ICP8) DNA binding protein. It has demonstrated promising efficacy in animal models of genital herpes (26, 35) with strong T helper 1 (Th1) cytokine and T cell responses (34) and has been in a phase 1 clinical trial (HSV529, NCT02571166). Maternal...
subcutaneous immunization with dl5-29 reduced visceral spread of HSV-2 in mouse pups but did not prevent replication at the site of entry, spread to the CNS, or lethal encephalitis (38). Recent work revealed that intramuscular immunization with dl5-29 is more effective than the subcutaneous route (35); thus, our studies tested whether maternal immunization by the intramuscular route could prevent mortality in offspring. To this end, we immunized B6 female mice with mock-infected cell lysate or dl5-29 (Fig. 4A), which should generate sera capable of neutralizing both HSV-2 and HSV-1 (26, 35).

To determine whether IgG antibodies resulting from immunization could access the neonatal circulation, we assessed the presence and quantities of HSV-specific antibody in serum of paired dams and pups (Fig. 4B and C) and observed that immunized dams produce antibodies specific for gD, gC, gB, and ICP4. Likewise, serum from the offspring of the dl5-29–immunized group had significantly increased antibody binding to gD, gC, gB, and ICP4 relative to offspring of mock-immunized dams (P = 0.0005, 0.0102, 0.00001, and 0.00002). We then tested whether IgG antibodies could access the neonatal nervous system. Using immunofluorescence microscopy, we compared the TGs of uninfected pups from dl5-29– and mock-immunized dams (Fig. 4D). The data showed elevated staining for mouse IgG in the TGs from the immunized group (fig. S2). Together, these results indicate that dams mount an antibody response after immunization that can be transferred to the circulation and nervous systems of their offspring.

Maternal immunization with dl5-29 protects against neonatal herpes

Having shown that vaccine-derived maternal antibody can be transferred to progeny, we examined whether immunization was sufficient to protect against nHSV in mice. After the experimental immunization plan in Fig. 4A, we challenged pups intranasally with lethal doses of HSV-1. Pups of dl5-29–immunized dams showed significantly decreased viral burden in the CNS (P < 0.000001) and peripheral nervous system (P = 0.0121) and in various visceral organs (P < 0.003) (Fig. 5A). These pups survived the HSV challenge, whereas pups of mock-immunized dams succumbed to infection (Fig. 5B).

Similarly, we challenged offspring of immunized dams to a heterologous and low-passage clinical HSV-2 isolate (strain G) and found comparable protection (Fig. 5C). Protection extended to at least four subsequent pregnancies (≥245 days) from these dams, demonstrating that the antibody response was long-lasting and provides protective immunity against nHSV (fig. S3). Humans and mice both transfer immunoglobulins vertically via placental transfer to the fetus, but mice additionally pass mammary antibody secretions to suckling offspring before gut closure. To address this difference, and to separate the relative contributions of placenta- and milk-derived antibodies to protection, we used fostering techniques. Offspring from mock- or dl5-29–immunized dams were removed immediately at birth from their birth dam and fostered by equivalent or reciprocal (mock- or dl5-29–immunized) dams before being challenged with HSV-1 (Fig. 5D). Equivalent survival was observed between litters that received immunization-derived antibodies via the placenta only or milk only. Thus, maternal vaccination with dl5-29 was protective against both HSV-1 and a heterologous HSV-2 strain, and antibody transferred via the placenta was sufficient to completely protect offspring.

Behavioral morbidity is prevented by vaccination

Even with antiviral treatment, infants that survive nHSV infection of the CNS are left with lifelong debilitating neurological impairments (12, 15, 39). To establish a model system for monitoring these
neurological sequelae, we used the open field test (OFT), a behavioral assay that measures general ambulatory ability, novel environment exploration, and anxiety in rodents (40, 41). When mice are introduced into a novel environment, they demonstrate exploratory behavior. Thigmotaxis, a tendency to remain close to the periphery of an enclosure, is indicative of anxiety-like behavior in both mice and humans (40, 42). Offspring (P1-2) of latently infected and mock-infected dams were challenged with a low dose (100 PFU) of HSV-1 and monitored until 5 weeks of age. A low dose was used to ensure survival of both cohorts, and at this dose, no differences in mortality, weight, water consumption, or motor function were observed (fig. S4). However, the OFT revealed that offspring of mock-infected dams had an affinity for the periphery and corners of the test arena, thus demonstrating elevated thigmotaxis (Fig. 6A). Offspring of latently infected dams, conversely, spent similar amounts of time exploring the outer and central areas (Fig. 6B and C). We next assessed whether maternal immunization could similarly prevent this anxiety-like behavior in offspring challenged with HSV. As expected, we observed that offspring of mock-immunized females exhibited increased thigmotaxis (Fig. 6, D to F) regardless of distance traveled in the OFT (fig. S5). Offspring of dl5-29–immunized dams displayed normal thigmotaxis and their behavior was comparable to naïve, age-matched controls (Fig. 6, D to G). These findings suggested that even low dose and sublethal neonatal infection with HSV-1 can result in behavioral morbidity, and this morbidity is preventable by maternal immunity or immunization.

DISCUSSION

Neonates are particularly vulnerable to infection, and at this stage of life, pathogen-specific immunity relies predominantly on maternal-derived immunoglobulins (37, 43). Maternal antibody is passed to offspring via the placenta and ingestion of breast milk (44). For HSV, clinical evidence has suggested that the presence of maternal HSV-specific antibody is crucial for protection against nHSV because mothers with a previous history of HSV rarely transmit the virus to their babies (17, 45–47). Previous research in animal models has also supported the important role of antibody in the prevention of nHSV (48–56). We recently demonstrated the presence of HSV-specific IgG in human fetal neural tissue, suggesting that the protection afforded by IgG may also occur in the nervous system (23). In this study, we show that maternal HSV-specific neutralizing antibodies are transferred via the placenta in humans. Seropositive humans and mice raise a similar profile of HSV glycoprotein-specific antibodies. Administration of these antibodies to pregnant dams can protect against nHSV. Currently, passive IgG therapy [intravenous immunoglobulin (IVIG)] is used to prophylactically protect at-risk neonates from varicella zoster and hepatitis B viruses but requires additional IVIG treatments for subsequent births. This limitation can potentially be resolved via immunization, which can simultaneously protect women, fetuses, and neonates even through multiple pregnancies (43). Our approach shows that maternal immunization with a vaccine candidate, HSV-2 dl5-29, results in a robust antibody response that is transferred to and protects neonates through up to five consecutive pregnancies. This antibody
response was cross-reactive to HSV-1 epitopes, providing crucial evidence that an HSV-2 vaccine would likely be sufficient to protect against neonatal HSV-1 and HSV-2 infections. This study has demonstrated that in mice, HSV-specific IgG transferred through either the milk or placenta alone can protect against nHSV. This is a key observation as it supports the notion that human transplacental antibody could also be sufficient for protection from perinatal infections (57).

nHSV is life-threatening, and subsequent complications can lead to long-term neurological sequelae even with aggressive antiviral treatment (58). In this study, we found that neonatal exposure to sublethal doses of HSV can cause behavioral changes in mice that may model the neurological morbidities observed in humans (42). Although only a single behavioral assessment was used here, this observation is important because it provides a system to test the abilities of prophylactic and therapeutic interventions to affect behavioral changes driven by nHSV infection. These behavioral changes could be caused by neuronal loss from viral replication or indirectly by immunopathological changes induced by infection of the CNS. Increasing evidence suggests a role for the immune response in behavior (59, 60), and it will be important to investigate the neurobiological basis of the observed protection with multiple behavioral tests. In particular, infection with pathogens that can cause neurological complications, including Toxoplasma gondii, group B streptococcus, malaria, Zika virus, and dengue virus, induces cognitive behavioral changes in rodent models (61–66). Infection triggers proinflammatory cytokines and microglial activation in the brain and can affect mood, cognition, and behavior (59, 65). Accumulating evidence suggests that prenatal and postnatal immunostimulation influences neurogenesis, cognitive function, and behavior in offspring (67–74). This study raises the potential specter of permanent behavioral changes caused by nHSV in babies born to mothers without preexisting immunity. This may represent another example of how the timely acquisition of immunity to a pathogen can lead to considerable benefits for the offspring. The maternal virome is therefore likely an important determinant of human health.

Prevention of clinical disease is typically the endpoint for the U.S. Food and Drug Administration’s licensure of vaccines. There has been considerable discussion of reduction of viral shedding, seroconversion, or other laboratory results as measures of efficacy of HSV vaccine candidates (25, 35, 75). Our results raise the possibility of measuring other correlates of disease protection provided by HSV vaccines. There is also potential for vaccine efficacy against other medical outcomes, such as behavioral pathologies and age-dependent cognitive decline (76).

We suspect that maternal antibody can access fetal neural tissue through the developing blood-brain and blood-nerve barriers and prevent infection by vertically transmitted pathogens. The TORCH pathogens (Toxoplasma, other, rubella, cytomegalovirus, and HSV) and Zika virus can cause severe neurological sequelae in fetuses and neonates (77–79). Administration of vaccines and passive antibody therapy to women of reproductive age should be explored as approaches to mitigate disease in this at-risk population (20, 79–82). Moreover, highly potent monoclonal antibodies could be engineered to increase their affinity and breadth of pathogen recognition and to enhance their placental transfer. Our work provides strong evidence that the presence of neutralizing antibodies is sufficient to protect

Fig. 5. Maternal immunization with dl5-29 protects against neonatal herpes. B6 females were immunized and boosted as shown in Fig. 4A. Neonates P1-2 from dams immunized with dl5-29 (red) or from mock-immunized dams (blue) were challenged with HSV. (A) Viral titers in perfused organs from neonates infected with 10^7 PFU of HSV-1. Survival of neonates challenged with 10^7 PFU of HSV-1 (B) or HSV-2 (C). (D) Offspring from mock- or dl5-29–immunized dams were removed immediately at birth from their birth dam, fostered by equivalent or reciprocal (mock- or dl5-29–immunized) dams, and challenged P2 with 10^3 PFU of HSV-1 to assess milk (green) and placental (purple) protective contributions. Statistical significance was determined by multiple t test (A) or log-rank test (B to D). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Data are representative of at least two independent experiments.
Fig. 6. Neonatal herpes causes anxiogenic behavior, which can be prevented by maternal immunization. Mice challenged with 100 PFU of HSV-1 as neonates (P1-2) were analyzed in the OFT 5 weeks after infection. (A) Open field behavior in offspring of latently infected and mock-infected dams is shown by movement tracking (top) and heat map (bottom). Location preferences (B) can be quantified as time spent in the inner region (within red lines) and outer periphery or (C) as thigmotaxis, a ratio of time spent in the outer perimeter over total time. Similarly, offspring of d5S-29− and mock-immunized dams (D) were assessed for location preference (E) and thigmotaxis (F). As a control, thigmotaxis of age-matched, untreated, naïve mice was quantified (G). Data are represented as individual animals, and statistical significance was determined by unpaired t test. Error bars represent SD. ***P < 0.001 and ****P < 0.0001. Data are representative of two to three independent experiments.
against nHSV. Clinical trials of HSV vaccines have exclusively assessed horizontal transmission and reactivation in adults (8, 31). Although vaccination has not been assessed for prevention of vertical transmission, such an approach could prove useful in reducing perinatal and postnatal acquisition of HSV (24). The devastating consequences of nHSV should compel and energize us to further develop such vaccine and therapeutic antibody approaches.

MATERIALS AND METHODS

Study design

The rationale for this study was based on previous findings (23). Overall, we wanted to determine whether maternal vaccination could provide sufficient antibody to offspring and whether this could ultimately protect against neonatal herpes. Sample sizes and time points were determined on the basis of previous studies with the neonatal murine model. Mouse studies were conducted using litters from six to eight different dams per group. One to three litters are represented in each graph, with data points representing individual animals. Endpoints for survival studies were defined as excessive morbidity in each animal. Data are presented as Kaplan-Meier plots, log-rank values are presented. For neutralization assays, groups were compared with a linear regression analysis. All data were analyzed using GraphPad Prism software. For human statistical analysis, a two-tailed Student’s t test (α = 0.05) was used for comparing behavioral data, viral titers, and samples probed by the same bead type. For Kaplan-Meier plots, log-rank P values are presented.

SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/11/487/eaau6039/DC1

Materials and Methods

Fig. S1. Maternal antibody is not present in 18-month-old children.

Fig. S2. Measurement of IgG staining in TG tissues from Fig. 4D.

Fig. S3. Long-term (≥245 days) protection by maternal immunization with d5S-29.

Fig. S4. Neonatal mice do not show signs of infection with a low HSV-1 dose.

Fig. S5. Total ambulation of HSV-challenged and naive mice in the OPT.

Data file S1. Primary data.

References (85-89)

REFERENCES AND NOTES

Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity

Chaya D. Patel, Iara M. Backes, Sean A. Taylor, Yike Jiang, Arnaud Marchant, Jean M. Pesola, Donald M. Coen, David M. Knipe, Margaret E. Ackerman and David A. Leib

Sci Transl Med 11, eaau6039.
DOI: 10.1126/scitranslmed.aau6039

Nipping neonatal HSV in the bud

Vertical transmission of herpes simplex virus (HSV) 1 or 2 can have devastating consequences for newborn babies. Despite existing antivirals, systemic HSV can lead to permanent central nervous system damage or even death. Patel et al. examined human samples and used a pregnant mouse model to determine whether maternal immunity could protect against neonatal HSV infection. They detected maternal anti-HSV IgG in cord blood, demonstrating that protective antibodies cross the placenta. Passive transfer of anti-HSV IgG or vaccination of pregnant mice protected pups from neonatal HSV-1 or HSV-2 challenge. Their findings suggest that vaccination of expectant mothers may reduce morbidity and mortality associated with neonatal HSV infections.
Supplementary Materials for

Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity

Chaya D. Patel, Iara M. Backes, Sean A. Taylor, Yike Jiang, Arnaud Marchant, Jean M. Pesola, Donald M. Coen, David M. Knipe, Margaret E. Ackerman, David A. Leib*

*Corresponding author. Email: david.a.leib@dartmouth.edu

DOI: 10.1126/scitranslmed.aau6039

The PDF file includes:

Materials and Methods
Fig. S1. Maternal antibody is not present in 18-month-old children.
Fig. S2. Measurement of IgG staining in TG tissues Fig. 4D.
Fig. S3. Long-term (≥245 days) protection by maternal immunization with dl5-29.
Fig. S4. Neonatal mice do not show signs of infection with a low HSV-1 dose.
Fig. S5. Total ambulation of HSV-challenged and naïve mice in the OFT.
References (85–89)

Other Supplementary Material for this manuscript includes the following:

(available at www.sciencetranslationalmedicine.org/cgi/content/full/11/487/eaau6039/DC1)

Data file S1 (Microsoft Excel format). Primary data.
Supplementary Materials:

Materials and Methods

Cells and viruses

The strains used in this study were HSV-1 17syn+ (85) and HSV-2 G (86). Immunization studies were carried out using HSV-2 dl5-29, which lacks UL5 and UL29 and is derived from HSV-2 186 syn+ (33). Virus stock preparation and the plaque assay were performed using Vero cells or V5-29 cells as described previously (87, 88).

Neutralization Assays

We used two different neutralization assays for our experiments; plaque reduction neutralization (PRN) is a highly reproducible assay and was used for mouse samples. As the human samples were limited in quantity, we utilized a serum neutralization assay (SN) which requires less volume. SN assays were conducted by heat-inactivating cord serum samples at 56°C for 30 minutes and pre-incubating serial dilutions with 50 plaque-forming units (PFU) for one hour at 37°C. Samples were then incubated on a monolayer of Vero cells for 48 hours and assessed for cytopathic effect (CPE). Similarly, PRN assays involved incubation of serial dilutions of serum or 250 mg of tissue protein that were titrated in a standard plaque assay as previously described (88).

Mice and animal procedures

All procedures were performed in accordance with federal and university policies. C57BL/6 (B6) and muMT (B6.129S2-1ghm1Cgn/J) mice were purchased from The Jackson Laboratory and bred in the barrier facility in the Center for Comparative Medicine and Research at the Geisel
School of Medicine at Dartmouth. Blood was collected from naïve and latently infected mice during cardiac perfusion with 1-2 ml of cold PBS. Pooled blood samples were allowed to clot by stasis for at least 15 min. at room temperature and then were spun at 2000 x g for 10 min. at 4°C. The serum supernatant was collected and stored at −80°C. Sera treatments were given in a volume of 1 ml at indicated time points during or after gestation via intraperitoneal injection (i.p.). Dams were given 1 mg or 2 mg purified IgG i.p. for viral titer or survival experiments respectively. Sera from d15-29 and mock immunized dams and their respective offspring were harvested at the same time (P4) and collected from the mandibular vein with a 5mm lancet (Medipoint). For fostering experiments, dams were bred simultaneously and monitored closely for birth after which litters were immediately tattooed and swapped to foster dams. Foster dams and litters were observed daily for 7 days for weight change and litter acceptance.

IgG Purification

IgG purification was performed on AKTA FPLC system via Protein G Agarose (Thermo Scientific Pierce) affinity chromatography. Briefly, 5 ml murine serum was equilibrated (1:2) with 100mM sodium acetate, pH 5, before the sample was applied to the column with a flow rate of 0.250 ml/min. The protein elution was achieved in a 15 ml volume with 100 mM glycine, pH 2.7, and quickly neutralized with 100mM Tris-HCL, 0.5M NaCl, pH 8.5. Elution fractions were then concentrated, buffer exchanged to PBS and filter sterilized. Purity was assessed via protein gel electrophoresis and concentration was determined via Nanodrop spectrophotometer.

Immunization
Eight-week old B6 female mice were immunized twice intramuscularly with 10^5 PFU of extracellular dl5-29 virus, mock cell lysate, or PBS in a 25 µl volume. Injections were carried out 21 days apart and while mice were under isoflurane anesthesia.

Viral Challenge

For adult corneal infections, corneas were scarified with a 25-gauge needle and inoculated with 2×10^5 PFU/eye in a volume of 5 µl as previously described (88). Neonatal pups postpartum day one to day two (P1-2) were infected intranasally (i.n.) with indicated amounts of HSV-1 in a volume of 5 µl under isoflurane anesthesia.

Tissue Analysis

For neutralization and multiplex, TG tissue was perfused, extracted, and homogenated with a tissue blender (Omni International) in PBS containing cOmplete protease inhibitor (Roche). Homogenate was sonicated six times, 15 seconds each, and spun at 14,000 rpm for five min. at 4°C. The protein concentration for each sample was determined using the Pierce BCA assay kit (Thermo Fisher Scientific). In neutralization assays, TG extracts were normalized for protein concentration. For viral titers of organs, tissue was harvested after cardiac perfusion with at least 5 ml of cold PBS per animal. All tissues and organs were collected in 1.5 ml tubes containing 100 µl of 1 mm diameter glass beads and 1 ml of Dulbecco’s modified Eagle’s medium (DMEM) containing 2% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 1% amphotericin B. Sample homogenates were prepared by mechanical disruption in a Mini-Beadbeater-8 (BioSpec Products) and then sonicated for 1.5 minutes in an ice bath. Viral titers of homogenates were determined by plaque assay on Vero cells.
Open Field Test (OFT)

Test boxes were fabricated in-house and sanitized with Clidox before and after each test subject. Five to 7-week-old B6 mice were placed into the open field arena (30 cm x 30 cm) and allowed to habituate for 10 minutes. The following 10 min. were recorded (Canon Vixia HFM52) and quantified with open-source software (83). Both male and female mice were included in the study. Test room lighting, temperature and noise levels were kept consistent and the researcher was not present in the room during the recorded time.

Multiplexed Antigen-specific Antibody Assay

A customized microsphere assay was developed using a panel of HSV-1 proteins (gifts from Gary Cohen, Roselyn Eisenberg, and Neal Deluca), HSV-1 gD ectodomain (gD') (Immune Tech. Corp.), gG1 and gG2 (Abcam), goat anti-IgG (Southern Biotech), HIV gp120 (made in-house in HEK 293 cells), and albumin (RPI). Proteins (6.5 μg) were conjugated to carboxylated magnetic fluorescent microspheres (MagPlex-C Microspheres, Luminex Corp.) in an adaptation of a previously described method (89). For fluorescent signal detection, we used black, clear bottom 384-well plates. Serum samples were incubated with HSV protein microspheres (500 beads/well) overnight at 4°C and washed in PBS with 1% BSA, 0.05% Tween-20, and 0.1% Sodium Azide. Anti-mouse IgG PE or anti-human IgG PE (Southern Biotech) was incubated at 0.65 μg/ml for 45 min in PBS-TBN. The microspheres were washed and resuspended in 50 μl of sheath fluid (Luminex) and read using a Bio-plex array reader (FlexMap 3D, Bio-Plex Manager 5.0, Bio-Rad). The median fluorescence intensity (MFI) of PE signal was determined for each bead set in each well at 1/1000 dilution for mouse samples and 1/5000 for human samples. For
human data, we mean-centered and scaled to a 0-1 range (1 referring to maximum binding and 0 referring to minimum binding) for each bead type. Human cord samples were categorized into two tertiles by mean antibody binding of all HSV-specific beads. If the mean antibody binding was above the second tertile, it was categorized as a high responder and a low responder if below the first tertile.

Immunofluorescence

Tissue was collected from perfused mice and fixed with 4% formaldehyde and cryopreserved in 30% sucrose. Sections were prepared and imaged as previously described (23). Fluorescence intensity was quantified using ImageJ with 3 biological replicates and was calculated using: corrected total fluorescence = integrated density – (area x mean fluorescence of background).

Wire Hang Test

Neuromuscular motor function and strength was assessed using the Wire Hang Test mice at 5 weeks post infection. Each mouse was placed on a wire platform which was then inverted and suspended over a cage. The latency from the beginning of the test until the mouse fell was recorded.
Fig. S1. Maternal antibody is not present in 18-month-old children.

Matched maternal and 18-month infant samples were probed for HSV-1/2 specific antibodies and plotted by glycoprotein binding (maximum binding = 1, minimum binding = 0). Dotted line refers to line of identity, n= 10 mothers and infants.

Fig. S2. Measurement of IgG staining in TG tissues from Fig. 4D.

Fluorescence intensity of anti-mouse IgG was measured in TG tissue sections (10 µm) using ImageJ. A.U. = arbitrary units. Error bars are SD. n= 6 mice in each group. Statistical significance was determined by unpaired t-test; *, P < 0.05.
Fig. S3. Long-term (≥245 days) protection by maternal immunization with *dl5-29*.

B6 females were immunized and boosted as shown in Figure 4A. Following 5 pregnancies, (245 days post immunization) P1-2 neonates from dams immunized with *dl5-29* (red) or from mock immunized dams (blue) were challenged with 10^3 PFU HSV-1. Statistical significance was determined by log-rank test; **, $P < 0.01$.

![Graph showing survival rates](image-url)
Fig. S4. Neonatal mice do not show signs of infection with a low HSV-1 dose.
P1-2 mice from latently or mock infected dams were challenged with 100PFU of HSV-1 and monitored for A) survival, B) weight change, and C) daily water consumption after infection. D) Neuromuscular motor function was assessed using the Wire Hang Test on these mice at 5 weeks post infection. Error bars indicate SD.
Fig. S5. Total ambulation of HSV-challenged and naïve mice in the OFT.
Total distance (meters) was quantified from video recordings of the OFT from offspring of latently infected, mock-infected, dl5-29 vaccinated, mock vaccinated dams and naïve age-matched controls.